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SUMMARY
Visual plasticity declines sharply after the critical period, yet we easily learn to recognize new faces and pla-
ces, even as adults. Such learning is often characterized by a ‘‘moment of insight,’’ an abrupt and dramatic
improvement in recognition. The mechanisms that support abrupt learning are unknown, but one hypothesis
is that they involve changes in synchronization between brain regions. To test this hypothesis, we used a
behavioral task in which non-human primates rapidly learned to recognize novel images and to associate
themwith specific responses. Simultaneous recordings from inferotemporal and prefrontal cortices revealed
a transient synchronization of neural activity between these areas that peaked around the moment of insight.
Synchronization was strongest between inferotemporal sites that encoded images and reward-sensitive pre-
frontal sites. Moreover, its magnitude intensified gradually over image exposures, suggesting that abrupt
learning is the culmination of a search for informative signals within a circuit linking sensory information to
task demands.
INTRODUCTION

In adults, visual learning often requires prolonged training. Even

for simple tasks, such as discriminating the orientation of a line,

behavioral changes often emerge after days or weeks of prac-

tice.1 For more complex tasks, such as the detection of anoma-

lies in medical images, efficient performance requires months or

years of training.2,3 Neurophysiological studies have similarly re-

vealed that the adult visual cortex often changes very slowly, if at

all, in response to experience.4,5

At the same time, it is clear that adults are capable of rapid vi-

sual learning under right circumstances.6,7 Indeed, learning can

even occur following a single exposure to a stimulus8 or abruptly

after a series of unsuccessful attempts at a task.6,7 This latter kind

of learning, which Hebb referred to as ‘‘insight,’’9 has frequently

been observed in freely behaving animals attempting to obtain

reward in unfamiliar settings. These observations pose a chal-

lenge for modern theories of learning that rely on gradual synaptic

changes following many presentations of the same stimulus.10

Abrupt learningwould seem to be necessary for survival in nat-

ural visual environments, which typically do not afford the oppor-

tunity for hundreds of exposures to novel stimuli. At the same

time, such plasticity must be engaged selectively, to prevent

newly learned stimuli from overwhelming existing representa-

tions. One solution to this ‘‘stability-plasticity’’ dilemma is there-

fore to impose a gating mechanism, whereby abrupt visual

learning occurs only when specific subgroups of neurons are

active together.9,11 For visual learning, the relevant subgroups

might be those that encode the relevant stimuli and those that

encode the demands of a given task or context.12
Curre
At a neural level, these operations can be implemented

through oscillatory synchronization, which has been shown to

support the rapid formation of new memories,13–15 as well as

long-range communication more generally.16 It has also been

implicated in functions that are important for slower forms of

learning, such as attention1 and reward sensitivity.14 Critically,

oscillatory synchronization can change flexibly on short time-

scales so as to link different brain regions that contain different

types of task-relevant information.11 However, the role of this

kind of synchronization in abrupt visual learning is unknown.

Here, we have tested the hypothesis that oscillatory synchro-

nization facilitates rapid visual learning using multi-site neural re-

cordings in non-human primates. The animals were trained to

perform a naturalistic ‘‘foraging’’ task, in which they learned to

recognize a visual image and to associate it with a rewarded

location. Learning in this taskwas abrupt, withmost sessions be-

ing characterized by large performance improvements over the

course of a few trials. At the same time, we recorded from the

prefrontal cortex (PFC) and inferotemporal (IT) cortex, which

are known to interact during visual learning and perception.17–19

Around the ‘‘moment of insight,’’ we found a transient increase

in synchronization between neural activity in these two cortical

areas. This increase in synchronization was strongest between

prefrontal sites that encoded reward and IT sites that discrimi-

nated between the relevant visual stimuli. In contrast, we did

not find local changes in neural firing or oscillatory power that

correlated strongly with learning. Therefore, these results sug-

gest that rapid learning relies on temporal synchronization be-

tween cortical sites that connect relevant stimuli with task

outcomes.
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Figure 1. Task diagram and behavior

(A) An oculomotor ‘‘foraging’’ task was used to study visual learning. Each trial beganwith the onset of a fixation cross. After fixation was acquired, a natural image

appeared, and animals were then free to explore the image in search of a reward zone (red-white ring but not visible to the subject). Fixation on the reward zone led

to the release of the reward and the end of the trial. If the reward zone was not found after 15 s (monkey F) or 20 s (monkey M), a cue indicated the rewarded

location. Eye traces (green) are shown for an example early trial (top), when the animal failed to find the reward zone after 20 s, and a late trial (bottom), after

learning was complete. The two images were shown in an interleaved manner in every session.

(B) Behavioral performance for an example image. Blue dots indicate the time required to find the target on a single trial, and the black line indicates the fit of a

sigmoid function to the data for all trials. The red star indicates theN50 trial, estimated from the sigmoid fit as the time required for performance to improve by 50%

from its pre-learning to its post-learning state.

(C) Sigmoid fits for all images for monkey M, aligned on the N50 value for each image. Fits for monkey F are included in Figure S1E.

(D) The rate of learning, defined as the performance change as a function of trial, for images for monkey M, aligned on the N50 value for each image. Data for

monkey F are included in Figure S1F.

See also Figure S1.
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RESULTS

Abrupt visual learning in a naturalistic behavioral
paradigm
To probe the mechanisms of abrupt learning, we used the

‘‘oculomotor foraging’’ task shown in Figure 1A.20,21 On each

trial, animals freely explored a natural scene until their gaze

landed within an unmarked reward zone (RZ). A fixation within

the RZ triggered the release of a few drops of juice and ended

the trial. Both the starting eye position and the precise location

of the RZ varied from trial to trial (STAR Methods) so that ani-

mals could not perform the task by simply associating a fixed

saccade vector with each image (Figures S1G–S1L). Instead,
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they had to learn the spatiotopic location of the RZ within the

image.

Within each session, animals were exposed to two different

images, each with its own unique RZ, in a randomly interleaved

fashion. Visual learning was therefore an important component

of the task, as both the images were initially unfamiliar to the

animals.

Figure 1B shows the progression of learning within a single

example session, considering only one of the two images pre-

sented. Each point shows the response time,21 defined as the

time it took the animal to find the RZ on each trial. Although

the animal occasionally found the RZ quickly, typical response

times were initially very high. This was not due to a lack of
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engagement, as the animal actively searched the image, making

on average 41.5 saccades on each trial (Figure S1B). Tomaintain

engagement during the early pre-learning phase, these trials

timed out after 15 or 20 s, at which point a cuewas shown to pro-

vide a hint about the correct location (Figure 1A, top).

On the 43rd trial for this example image, a moment of insight

occurred and the typical response time abruptly dropped from

20 to �1 s. Response times then remained low in most subse-

quent trials, suggesting that the animal had successfully learned

to recognize this image and to associate it with the correspond-

ing RZ. Overall task engagement appeared to be similar before

and after learning as the animals continued to generate sac-

cades at similar rates (Figure S1B; 3.69 ± 0.27 versus 3.29 ±

0.21 saccades/s). However, after learning, the saccades were

generally directed toward the RZ, resulting in trials of shorter

duration.

To quantify the dynamics of learning, we fit the sequence of

response times for each image to a sigmoid function (the solid

line in Figure 1B). From the sigmoid fits, we extracted two quan-

tities (STARMethods). The first wasN50 (the red star in Figure 1B),

defined as the trial in which response time decreased by half from

its initial value—we used this value as an objective marker of the

trial for which learning was centered. The second was the transi-

tion time (the arrow in Figure 1B), defined as the number of trials

required for performance to go from75% to 25%of themaximum

response time indicated by the sigmoid fit. For the data shown in

Figure 1B, the transition timewas two trials, which lasted 10.1 s in

total, indicating that learning was indeed abrupt.

In total, we obtained behavioral and electrophysiological data

from sessions involving 50 different images (37 from monkey M

and 13 from monkey F). As in the example, the behavioral data

were well fit by a sigmoid function (median r2 = 0.76), with the

fit quality not differing significantly between the two animals

(one-way ANOVA, p = 0.59). From these fits, we estimate that

the median value of N50 was 18 trials and the mean transition

time was 1.58 trials (SE = 0.15 trials). Basic eye movement met-

rics including saccade rate, microsaccade rate, and latency to

the first saccade on each trial did not vary significantly with

learning or between subjects (two-way ANOVAs, p > 0.05).

Figures 1C and 1D summarize the progression and rate of

learning for all images for an individual animal (monkey M). As

in the example session, performance changes were confined

to a few trials around the N50 trial for each image. Similar results

for the second animal are shown in Figures S1E and S1F. Overall,

these results show that learning had a pronounced effect on task

performance, it happened rapidly, and it usually followed a pro-

longed period of unsuccessful task performance. These charac-

teristics are typical of abrupt learning.6,9

We also verified that this learning was persistent, by retesting

the animals on a subset of the images, many days after the first

exposure. On average, response times during the first 10 trials

for each image decreased by 1.90 s from the first session to

the retest session, and the N50 value decreased by 12.6 trials

(two-way ANOVAs, by session, p < 0.05, for animal or

session3 animal interaction, p > 0.05). Even before N50, the an-

imals consistently made fewer saccades during recall sessions

than in the initial sessions (two-way ANOVA, p < 0.05), indicating

that they retained a memory of the images. Thus, our foraging

paradigm led to abrupt learning that was quite durable, as has
been reported for other abrupt learning tasks22 and for learning

in the wild.23

Cortical dynamics of abrupt learning
To assess the cortical basis of abrupt learning, we recorded simul-

taneously from 96-channel electrode arrays in IT and PFC (Fig-

ure 2). Area IT is known to be important for recognizing complex

images,24 whereas PFC plays a role in learning arbitrary associa-

tions.25 Lesion studies have suggested that the connections

between these two areas are especially important for learning

associations between images and spatial locations,19,26 but the

physiological nature of this interaction is unknown.27We therefore

examined the functional interactions between sites in IT and PFC

to determine how they evolve with learning.

To focus our analysis, we defined three epochs during each

behavioral trial. As shown in Figure 1A, these are the ‘‘scene

onset’’ epoch, when the image first appeared; the ‘‘foraging’’

epoch, when the search was initiated; and the ‘‘reward’’ epoch,

when the reward was dispensed. These were chosen because

retinal stimulation was largely identical within each epoch

throughout the progression of learning (STARMethods). To char-

acterize learning-related changes in synchronization between

PFC and IT, we examined the oscillatory coherence between

the local field potential (LFP) signals in each area, a commonly

used metric that indexes transient changes in corticocortical

communication during learning28,29 (STAR Methods).

To illustrate the general pattern of results, Figure 3A shows the

magnitude of synchronization between the two areas, averaged

across electrodes and images for both animals. Here, we have

grouped trials into a pre-learning phase (before N50, top row), a

post-learning phase (after N50, bottom row), and those around

themoment of abrupt learning (N50, middle row). The left column,

corresponding to the scene onset epoch, shows that the appear-

ance of a visual image generally triggered an increase in low-fre-

quency synchronization starting around 200 ms later. This

sensory response was consistent throughout the progression

of learning (two-way ANOVA, either learning phase or by animal

or the interaction, p > 0.05).

In contrast, the onset of the foraging epoch (middle column)

was accompanied by an increase in gamma band (30–50 Hz)

synchronization, which was most prominent around the N50 trial,

when learning was most evident (middle row). A Granger-

Geweke causality analysis revealed that the timing of these oscil-

lations was consistent with a feedforward flow of information

from IT to PFC (two-way ANOVA, p < 0.05 for the main effect

of direction and p > 0.05 for the animal). Similarly, the receipt

of the reward (right column) was accompanied by a strong in-

crease in alpha band (8–12 Hz) synchronization that was local-

ized to the trials near N50. This synchronization was more

consistent with feedback transmission (ANOVA, p < 0.05 for di-

rection and p > 0.05 for the animal). These two synchronization

events were the strongest candidates for a neural correlate of

the moment of insight in our data.

Indeed, across sessions, synchronization between IT and PFC

accurately predicted changes in behavioral performance. As

shown in Figures 3B and 3C, there was a strong correlation be-

tween the trials at which synchronization peaked and the behav-

ioralN50 trials (r
2 = 0.62 for gamma synchronization in the foraging

epoch and r2 = 0.73 for alpha synchronization in the reward epoch,
Current Biology 32, 2467–2479, June 6, 2022 2469



Figure 2. Electrode array locations (monkey F)

Images are shown in neurological convention (‘‘left is left’’). L is left, A is anterior, and S is superior.

(A) Coronal sections from theMarkov et al. CoreNets atlas30 showing the brain areas targeted for recording. The sulcal landmarks indicated were used to identify

the same regions in each animal’s MRI. Due to its curved shape, the arcuate sulcus (AS) appears twice in the coronal PFC sections.

(B) Combined MRI/CT images showing the positions of IT (top row) and PFC (bottom) arrays in coronal (left), sagittal (center), and axial (right) planes. The pre-

operative T1-weightedMRI was co-registered with a postoperative CT scan (red and cyan) to verify the array locations. To emphasize the neuroanatomy, the skull

and artifacts from other implants have been digitally removed from the CT scan.
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Pearson correlation tests, p < 0.05, corrected). These associa-

tions were significant for each animal individually (linear regres-

sion, trial�N50, p < 0.05, corrected) andwhen the datawere com-

bined across animals (linear regression, trial �N50, p < 0.05,

corrected). In contrast, the absolute magnitude of the change in

synchronization did not predict the behavioral moment of learning

for either frequency band or epoch (two-way ANOVAs, p > 0.05).

Moreover, the trialswithpeakalpha synchronizationwerecorre-

lated with the trials with peak gamma synchronization (r2 = 0.72

andp=0.008), indicating thatbothsignalswerepresent for individ-

ual images within the same sessions (Figure S1C). Notably, we

were unable to detect a timing difference between the trial of

peak gamma synchronization in the foraging epoch and the trial

of peak alpha synchronization in the reward epoch (Wilk test,

p > 0.05).

In contrast, for images that the animals failed to learn (see

STAR Methods for criteria), there was little change in synchroni-

zation across trials (two-way ANOVAs, p < 0.05). Thus, abrupt

learning was associated with an increase in gamma
2470 Current Biology 32, 2467–2479, June 6, 2022
synchronization in the foraging epoch and an increase in alpha

synchronization in the reward epoch, both of which appeared

to be highly specific to a moment of insight. We therefore focus

on these two signals in the following sections.

Selection of sensory signals during abrupt visual
learning
To perform the foraging task, the animals had to recognize which

of the two images was present on each trial before responding

with the appropriate eye movements. According to the hypothe-

sis outlined in the introduction, learning to recognize images

should correspond with oscillatory synchronization that is spe-

cific to the sites that encode the relevant stimuli. These sites

are most likely found in IT subpopulations that are selective for

the images shown in each session.

To test this hypothesis, we first trained a decoder to discrimi-

nate between the two images presented in each session, using

linear discriminant analysis (LDA; STAR Methods). The decoder

was trained on multi-unit activity in IT and recorded during the



Figure 3. Inferotemporal-prefrontal oscillatory synchronization reflects the learning state

(A) Synchronization of the LFP signals between IT and PFC is shown for the three-trial epochs (scene, foraging, and reward) at different stages of learning (pre-

learning, N50, and post-learning). Each panel contains a time-frequency plot covering frequencies in the range of 1–100 Hz and a period of 400 ms around the

event that defines each epoch. The time-frequency regions of interest selected from these preliminary data are indicated in white. Around themoment of learning,

there was a notable increase in gamma (30–50 Hz) synchronization in the foraging epoch (middle column, middle row, two-sided permutation t tests, p < 0.05) as

well as increased alpha band (8–12Hz) synchronization during the reward epoch (right column,middle row, two-sided permutation t tests, p < 0.05) relative to pre-

learning activity.

(B) Trial number of peak gamma synchronization (30–50 Hz) in the foraging epoch is plotted against the N50 value from the sigmoid fit for the corresponding

behavioral data, for each monkey separately (red and blue dots), along with best-fitting regression lines for each animal (red and blue dashed line). The black line

indicates the best-fitting regression line for all data combined.

(C) Same as in (B) but for alpha synchronization during the reward epoch.
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scene onset epoch. This approach provides a close correlation

of perceptual discriminability in other contexts.30 Consistent

with the importance of visual recognition for the task, more diffi-

cult image discriminations required more trials to learn—decod-

ing performance was negatively correlated with the number of

trials required to reach N50 (r = �0.48, Pearson correlation test,

p = 0.004).

To probe the cortical dynamics of this learning, we used the

weights recovered from the LDA to rank each IT electrode ac-

cording to the selectivity of its multi-unit activity for the two im-

ages in each session. These weights provided a measure of

informativeness—sites that were assigned high weights in the

LDA were necessary for the population to discriminate between

the two images, whereas those with low weights were not. From

this analysis, we ranked IT electrodes from most informative to

least informative in each session.

Figure 4 shows the average strength of interareal synchroniza-

tion relative to the N50 trial, computed in a moving window of five

trials (STAR Methods) and averaged across images—data from

the example image in Figure 1 are shown in Figure S1D. For visu-

alization purposes, we first focus on the 10most and 10 least se-

lective IT electrodes, but as shown below (Figure 6), the results

are not specific to this choice.
For gamma oscillations in the foraging epoch (Figures 4A and

S3G), the synchronization between PFC and IT was initially

similar, regardless of the informativeness of the IT electrodes.

That is, early in the session, synchronization strength was

similar for the most informative (red) and least informative

(blue) IT electrodes. However, for later trials, the most informa-

tive IT electrodes became significantly more synchronized with

PFC (Figure S3G) compared with the least informative IT elec-

trodes. A two-way ANOVA revealed a significant effect of infor-

mativeness (p < 0.05) but no difference between animals and

no interaction between these factors (p > 0.05, corrected).

Interestingly, this synchronization peaked near the N50 trial (Fig-

ure 4A), after which synchronization between IT and PFC

decreased gradually, with the preference for informative IT

electrodes also becoming weaker. Similar results were ob-

tained for the alpha band (Figure S3E; two-way ANOVA,

p > 0.05) and the gamma band (Figure S3F; two-way

ANOVA, p < 0.05) when we instead analyzed the LFP before

the final saccade of each trial.

A similar pattern was seen for alpha synchronization during the

reward epoch (Figures 4B and S3G). Synchronization with PFC

was initially similar across IT electrodes, but as trials progressed,

the strength of synchronization increased for the most
Current Biology 32, 2467–2479, June 6, 2022 2471



Figure 4. Image-selective sites in the IT drive synchronization around the time of learning

(A) Synchronization between IT and PFC is shown for the gamma band (30–50 Hz) in the foraging epoch. Here, data have been averaged across time within an

epoch and across images. Results are aligned on the N50 trial for each image. The dashed black line represents the grand median of all usable electrode pairs for

all sessions. The red and blue lines correspond to the average strength of synchronization between all PFC sites and those IT sites that are most (red) and least

(blue) informative about the images shown in each session. The shading around each line indicates the SEM.

(B) Same as in (A) but for alpha synchronization (8–12 Hz) during the reward epoch.

See also Figures S1–S3.
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informative IT electrodes, both in absolute terms and relative to

the least informative electrodes (two-way ANOVA, by informa-

tiveness, p< 0.05, for animal or informativeness3animal interac-

tion, p > 0.05, corrected). Here, a distinct peak in synchronization

was also evident around theN50 trial, with a strong preference for

informative IT electrodes. This preference also diminished after

learning was complete, but it did not disappear entirely, as the

increased contribution of informative IT sites to alpha synchroni-

zation persisted throughout the post-learning period (two-way

ANOVA, p < 0.05, for animal or informativeness3 animal interac-

tion, p > 0.05, corrected). Similar results were evident when data

for each animal were analyzed independently (Figures S2E and

S2F). Thus, both gamma and alpha synchronization peaked

around the N50 trial, and long-range synchronization levels

were significantly stronger for image-selective IT sites. This sug-

gests that learning was associated with a selective flow of sen-

sory information in both the feedforward and feedback

directions.

From Figure 4A (and Figure 4B), it is also apparent that the se-

lective contribution of different groups of IT electrodes to interar-

eal synchronization began on average well before the N50 trial.

Statistically, the increased gamma synchronization of the most

informative IT electrodes compared with the least informative

IT electrodes began 10 trials before the N50 trial (Figure S3H).

For alpha oscillations, the difference emerged 14 trials before

the N50 trial (Figure S3G). Thus, even considering that our anal-

ysis had a resolution of five trials (STAR Methods), it appears

that the selective synchronization of sensory signals began on

average well before the behavioral moment of learning. Pres-

ently, because our analysis averages across sessions and trials,

we cannot precisely quantify how abruptly or gradually this syn-

chronization occurs.

These findings indicate that abrupt learning at the behavioral

level might be caused by synchronization of image-selective IT

sites with PFC. The alternative possibility, that synchronization

with PFC causes image selectivity to develop in IT, was not

consistent with our data, as synchronization levels measured

before learning did not predict decoding accuracy or electrode

informativeness in IT, for either epoch (two-way ANOVAs,

p > 0.05). Thus, although a conclusive test will require causal per-

turbations,31 the data favor an influence of stimulus selectivity on

synchronization.
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This arrangement could arise trivially if unresponsive IT

electrodes were included in the analysis. Unresponsive elec-

trodes would be neither synchronized with PFC nor selective

for images, so they could exaggerate or even cause the

association between synchronization and selectivity, as shown

in Figure 4. To control for this possibility, we recomputed the syn-

chronization analysis shown in Figure 4 after sorting the IT elec-

trodes based on the responsiveness of their MUA signals

(Figures S2C, S2D, S3A, and S3B) rather than their selectivity.

Responsiveness was defined as the change in MUA firing rate

in the 400 ms following the release of the reward.

In contrast to the results shown in Figure 4, there was no differ-

ence in the synchronization between strongly responsive and

weakly responsive IT sites (two-way ANOVA, p > 0.05), indicating

that it is image selectivity, rather than signal quality, that drives

synchronization changes during learning. Consistent with this

idea, the most (and least) informative electrodes changed from

session to session (Figure S2A), which would not occur if defec-

tive electrodes were included in the analysis. Moreover, image

selectivity by itself did not account for synchronization in other

trial epochs or frequency bands (Figures S3C and S3D).

We conclude that abrupt learning was associated with a

gradual increase in synchronization between the PFC and IT

sites that carried the most information about the visual stimuli.

These changes were specifically related to IT selectivity, as no

similar pattern was found when electrodes were sorted accord-

ing to image selectivity or responsiveness in PFC (Figure S4).

Thus, although previous work has found evidence of visual

selectivity in PFC,32 this selectivity does not appear to be rele-

vant for abrupt learning in our task.

Contribution of reward signals to abrupt visual learning
Although informative sensory signals are necessary for our task,

they are not sufficient, as the image identity must be linked with

its corresponding RZ. The hypothesis outlined in the introduction

therefore suggests that abrupt learning might require informative

sensory signals to become synchronized with neural sites that

carry information about the reward context for each image.

To test this possibility, we first asked whether the location of

the RZ was encoded in the neural responses in PFC. Previous

work has shown that some PFC neurons respond selectively to

rewarded stimuli when they are placed in specific spatial



Figure 5. Reward-responsive sites in PFC are

more synchronized with sites in IT

(A) Synchronization between IT and PFC is shown

for the alpha band (8–12 Hz) in the reward epoch.

Conventions as in Figure 4. The shading around

each line indicates the SEM.

(B) The ratio of IT-PFC synchronization strength

between reward-responsive and unresponsive PFC

electrodes. Asterisks indicate a ratio significantly

different from 1.

See also Figures S2, S4, and S7.
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locations,33 so we recorded MUA responses during interleaved

trials in which animals had to make a visually guided saccade

to receive a reward (STAR Methods). For these trials, there

was no learning and no visual stimulation other than the saccade

target. We then sorted the PFC electrodes according to their

preference for the location of the RZ over opposite spatial loca-

tions (Figure S7I; STAR Methods).

The sites that responded selectively to the position of the RZ

were generally not more coherent with IT electrodes, in either

epoch or frequency band (Figure S7). This was the case whether

we defined the RZ position in retinal coordinates (relative to the

fixation point on each trial) (two-way ANOVA, either retinal coor-

dinates or by animal or the interaction, p > 0.05) or in screen co-

ordinates (two-way ANOVA, either screen coordinates or by

animal or the interaction, p > 0.05). A similar lack of RZ encoding

was found in IT (Figure S7; two-way ANOVAs, p > 0.05). Thus, it

does not appear that the sites from which we recorded play a

role in maintaining the location of the RZ.

An alternative possibility is that learning in our task relies on a

non-specific reward signal, as suggested by some computa-

tional models.34 Indeed, a population of neurons in PFC encodes

reward, independently of its associated target location,33 and

these neurons would seem to be well suited to carry out this

role. We therefore asked whether PFC sites that are sensitive

to reward35 play a role in abrupt learning.

Figure 5 shows the LFP synchronization between PFC and

IT, with data again averaged across images relative to the

N50 trial, as in Figure 4. However, in this case, the PFC elec-

trodes have been sorted according to the responsiveness of

their MUAs to the release of the reward (STAR Methods). For
Curren
alpha oscillations during the reward

epoch, the most reward-sensitive (red)

PFC sites exhibited greater synchroniza-

tion with IT than the least reward-sensitive

PFC sites (blue) (two-way ANOVA, by

responsiveness, p < 0.05, for animal or

responsiveness 3 animal interaction,

p > 0.05, corrected). In contrast to the

results shown in Figure 4, this increased

synchronization was not aligned on

the N50 trial but rather appeared to

be a non-specific signal that persisted

across the duration of each session.

Furthermore, in contrast to the IT results,

the electrodes that provided this reward

signal were consistent from image to im-
age (Figure S3B), as would be expected based on the anatom-

ical organization of reward signals in PFC.35 This effect was

again not due to poor electrode quality, as there was no similar

preferential synchronization for other frequencies and epochs

(Figure S4).

The full interaction between reward and sensory signals is

shown in Figure 6, for all sites in both areas. Here, each

panel corresponds to the data averaged across images for

trials relative to the N50 trial. As in Figures 4 and 5, the IT

electrodes have been ranked according to their informative-

ness about the images in each session, and this ranking is

indicated on the x axis of each panel. The PFC electrodes

have been ranked according to their responsiveness to

reward, and this ranking is indicated on the y axis of each

panel. The color at each point in each map indicates the

average strength of synchronization between electrodes of

the corresponding ranks. The reddish colors indicate strong

synchronization, and the bluish colors indicate weak

synchronization.

For the trials near N50 (Figure 6A, center panel), the stron-

gest alpha synchronization is indeed limited to image-selec-

tive sites in IT and reward-sensitive sites in PFC. This is shown

by the concentration of reddish colors in the upper right of the

panel—the contour plot in Figure 6B emphasizes that the

strongest synchronization occurs between these same sub-

populations. For trials long before or after the N50 trial, syn-

chronization is generally weaker and distributed more

diffusely across sites in both areas. These findings were sta-

ble across recording sessions (Figure S2J; R2 = 0.05 and

p = 0.09).
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Figure 6. Interaction of reward-responsive sites in PFC and image-selective sites in IT

(A) Alpha synchronization in the reward epoch for all IT and PFC electrodes across sessions. Reddish colors indicate strong synchronization, whereas the bluish

colors indicate weak synchronization. Different panels correspond to different trials relative to the N50 trial. Electrodes in IT were ranked based on how much

information they carried about images within each session (increasing informativeness from left to right). Electrodes in PFC were ranked based on how strongly

they responded following a reward (increasing sensitivity from left to right). Synchronization is generally weak and lacks organization early in each session (top left)

but grows stronger around the moment of learning (central panel).

(B) Synchronization around N50 is clearest between the IT electrodes that encode images and the PFC electrodes that encode reward (top right of central panel).

Data were placed into quintiles according to synchronization strength, and contours were drawn between levels to illustrate this synchronization structure.

See also Figure S2.
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(Lack of) local correlates of abrupt learning
The results thus far indicate that synchronization between IT and

PFC is a strong correlate of abrupt learning. For slower forms of

learning, previous work has found changes in selectivity at the

single-neuron level in both IT36,37 and PFC.17 We therefore

looked for similar changes in each area that might reflect abrupt

learning.

We used the decoding approach outlined above to assess

whether multi-unit population activity showed improved discrim-

ination ability with learning. The decoders were trained on the

same images during the scene onset epoch for the pre-learning,

peri-learning, and post-learning stages of each session. The re-

sults reveal that image decoding performance was generally

strong in both areas, with the mean cross-validated classifica-

tion rates being 87.5% (SE = 2.46%) in IT and 76.3% (SE =

1.72%) in PFC. However, decoding performance did not change

with learning, in either IT or PFC (Figure 7A). Moreover, we did

not find differences in average multi-unit firing rates between

the pre-, peri-, and post-learning periods in either area for either

animal (Figure 7B) (t tests, p > 0.05, corrected). In fact, the

pattern of population activity in each area did not change signif-

icantly across learning epochs (two-way ANOVAs, p > 0.05).

Thus, it does not appear that neural population activity became

more selective or responsive to the images during abrupt

learning.

Similarly, there was no consistent change in the LFP power

(Figures S6A and S6B) or intra-areal synchronization

(Figures S6C and S6D) around the moment of learning, either
2474 Current Biology 32, 2467–2479, June 6, 2022
globally per area or when electrodes were sorted by informative-

ness in any frequency band for either animal (t tests, p > 0.05,

corrected). In IT, there was a weak negative correlation between

image selectivity and both alpha (r2 = 0.03, Pearson correlation

test, p < 0.01) and gamma (r2 = 0.04, Pearson correlation test,

p < 0.01) LFP power (Figures S6E and S6F). Finally, the IT elec-

trodes’ responses to reward did not change with learning in a

way that was either frequency-specific or specific to their infor-

mativeness about the image (t tests, p > 0.05, corrected).

Across trials, there was however a steady decrease in the

overall PFC power and intra-areal coherence. Similar results

have been reported previously, and it has been suggested that

they might reflect a weaker38 or more selective engagement

with sensory information as learning progresses. The latter pos-

sibility is consistent with the finding that overall synchronization

often decreases after learning (Figure 4), although the relative

advantage for image-selective sites persists (Figures S3G and

S3H). A similar conclusion has been reached from fMRI studies

of learning.39

DISCUSSION

Visual learning has traditionally been studied in laboratory tasks

that involve extensive training to associate specific stimuli with

specific responses. Such training can profoundly alter the under-

lying cortical circuitry,40 but it does not necessarily reflect the

kind of learning that occurs in natural settings. We have therefore

examined learning in a more naturalistic, free-viewing task that



Figure 7. Learning does not affect multi-

unit population firing activity or selectivity

(A) Selectivity of multi-units for scenes was as-

sessed with a linear discriminant analysis (LDA).

Neural datawere split into pre-learning (gray), peri-

learning (bronze), and post-learning epochs (yel-

low) for each image, using the sigmoid fits

described in Figure 1 and the STAR Methods.

Selectivity levels in the IT or PFC did not, on

average, improve between learning epochs. The

error bars reflect the standard error (SE) across

sessions.

(B) Similarly, learning did not result in changes in

responsiveness between the learning epochs.

See also Figures S5 and S6.
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approximates the kind of foraging that primates perform daily in

the wild. This behavior is thought to have driven the evolutionary

expansion of PFC as well as its connection with IT.41

We found that non-human primates engaged in our foraging

task abruptly learned to recognize visual images and associate

them with specific reward locations (Figure 1). The strongest

neuronal correlates of this learning were found in the synchroni-

zation of the LFPs between PFC and IT (Figure 3), and this syn-

chronization seems well suited to link informative visual inputs

with signals about rewarded outcomes (Figures 4 and 5). The

strength of this synchronization was greatest around the

moment of insight (Figures 4 and 5), but the tendency for infor-

mative IT signals to be more synchronized with PFC persisted

well into the post-learning phase of each session (Figure 4). Local

correlates of learning were largely absent in both IT and PFC

(Figure 7). These results therefore indicate that long-range syn-

chronization is capable of supporting abrupt visual learning.

Theories of abrupt learning
Hebb was among the first to evince a theory of abrupt learning,

hypothesizing that the underlying neurophysiological mecha-

nisms share some properties with those that support learning

on longer timescales.9 More recent work has provided some

support for this idea by showing that rapid learning exhibits

stimulus specificity similar to that observed with slower

learning.6,42

Computational work has explained both types of learning

based on a process in which decision-making structures

search for the most informative sensory neurons for a given

task.43,44 This proposition is entirely consistent with the cur-

rent results (Figure 4), as well as previous findings in other

brain regions.40,45 Moreover, in accordance with psycho-

physical results, we find that the selection of informative

sensory inputs relies on explicit feedback42 in the form of

reward.

The mechanism by which reward signals are connected to

informative sensory signals is likely related to that of top-down

attention, which is important for most kinds of learning.1 The
Current
interplay of these different kinds of feed-

back is captured effectively by models

that typically operate on longer time-

scales.46 In these models, a successful

trial (i.e., one followed by reward) is fol-
lowed by an attentional signal that selectively targets the up-

stream neurons that led to the rewarded outcome.

Role of oscillations in abrupt learning
Hebb’s favored mechanism for learning took the form of cell as-

semblies that become connected after being repeatedly acti-

vated at the same time. Modern investigations of this hypothesis

in humans have confirmed that long-range synchronization be-

tween different brain regions is a reliable correlate of certain

kinds of learning.47,48 This coherence has often been found in

the gamma band,13,47 which is also associated with learning in

our task (Figures 3 and 6). Although the relationship between

gamma oscillations and learning was correlational in this work,

there is some evidence for a causal connection as well.21,49

We found that alpha synchronization seemed most related to

the release of rewardwithin each trial (Figure 5). Thismakes sense

in light of previous findings, in which alpha oscillations in PFC are

modulated by dopaminergic signals arriving via the striatum.50

Indeed, blocking dopamine receptors in PFC impairs associative

learning and alters alpha oscillations, and as a result, it has been

suggested that alpha plays a role in controlling neural selectivity

for sensory inputs.50 More generally, alpha is commonly thought

to gate neural activity according to task demands.51

Abrupt learning in the prefrontal cortex
Most previous work has suggested that PFC plays a role in

facilitating learning but that it is not itself the primary site of

long-lasting plasticity.52,53 Instead, it might be involved in

discerning the rules that map stimuli to responses for a given

task.54 The encoding of these rules can appear abruptly in

PFC for novel associations55 or for reversals of previously

learned associations.56 However, learned improvements in

stimulus encoding are less common, and there is even evi-

dence that stimulus encoding decreases with learning,38 sug-

gesting that PFC likely does not learn novel stimuli on short

timescales. Our results (Figures 3 and 4) are consistent with

this idea, since there is little evidence of enduring changes

in image selectivity in the PFC neurons we recorded (Figure 7).
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For visuomotor associations, the connection between PFC

and IT is known to be critical.19 Lesions that disconnect these

areas severely impair visuomotor learning and especially ‘‘object

in place’’ learning, a kind of rapid learning that resembles our

foraging paradigm.19 A more mechanistic role for PFC is sug-

gested by the finding that neurons in this area help to solve the

‘‘credit assignment’’ problem. This refers to the challenge faced

by the brain in identifying synaptic connections that can be

strengthened to improve performance on a given task. Asaad

et al. reported that selective visual signals were found in popula-

tions of PFC neurons that also represented reward outcomes, as

would be necessary to solve the credit assignment problem.57

Our results suggest that this information emerges dynamically

through communication between subpopulations of IT neurons

that encode the relevant stimuli and PFC neurons that encode

the reward (Figure 6).

Abrupt learning in the visual cortex
While previous work has found rapid learning in individual IT neu-

rons,37,58 we did not find evidence for this at the population level

(Figure 7). One possibility is that learning affected different clas-

ses of neurons differently,59 whichwould not have been reflected

in our population-level results, as we do not have a reliable way

of assessing molecularly defined cell types in our sample.

With extended training, changes in neural selectivity have

been observed in IT,60,61 V4,62,63 V2,4 and V1.5 These results

are generally consistent with the observation that the adult visual

system changes quite slowly with training.1 Far less is known

about the effects of rapid learning in the visual cortex, but

Wang and Dragoi reported a transient, learning-related increase

in spike field coherence in area V4.64 This coherence increase

was found in the theta band and within a single area but followed

a similar time course to the changes in long-range synchroniza-

tion we report here (Figure 3).

Other brain structures involved in abrupt learning
The most dramatic form of abrupt learning is one-shot learning,

in which only a single instance of a stimulus is provided.65 This

kind of learning is closely related to episodic memory, which de-

pends critically on the hippocampus.66 Interactions between

PFC and hippocampus have been shown to correlate with

learning on short timescales in monkeys28 and rodents.67 In hu-

mans, the hippocampus is recruited by PFC when one-shot

learning is dictated by the demands of a task.68 Thus, it might

be that PFC establishes the conditions for learning, but that infor-

mation is initially stored in the hippocampus69 and then later

consolidated into long-term memory.70

For tasks that involve a saccadic response, neurons in the

caudate nucleus facilitate saccades toward rewarded locations

and these signals can update rapidly as contingencies

change.56,71 Indeed, Williams and Eskandar found that firing

rates in the caudate correlate with the rate of learning in a task

that requires learning to saccade to a particular visual stimulus.72

The output of these neurons could therefore be linked to the syn-

chronization changes we have observed (Figure 4), which also

correlate with the rate of learning.

This connection between dopaminergic cells and learning in

PFC has been studied by Puig and Miller, who showed that

dopaminergic drugs in PFC canmodulate associative learning.50
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Specifically, the antagonists of some dopamine receptors block

the formation of new associations, but they do not impair the

recall of those already established. Putting these results

together, it could be that dopamine released from the caudate

facilitates the formation of new or stronger connections between

informative sites in IT and longer-term storage in the hippocam-

pus, with PFC playing a permissive role in ‘‘switching on’’ rapid

learning.52,73 Previous work has also highlighted a role for the

amygdala in this process.22,74

Rapid learning has also been found in auditory tasks.75 For

example, observers exposed to meaningless sounds learn to

recognize them after repeated exposures—as in our foraging

task, this kind of learning occurs abruptly and endures for several

weeks afterward.76 Learning in both types of tasksmight reflect a

general mechanism for assimilating statistical regularities about

the environment.77

Alternative interpretations
In addition to providing signals about reward outcomes, PFC

plays a role in arousal, working memory, and attention,35 all of

which are important for learning.1 Though it is notoriously difficult

to disentangle these factors,78 we have shown several lines of

evidence suggesting that none of them alone are sufficient to

explain our findings. First, non-specific effects like arousal would

not account for the preference for informative IT electrodes in the

synchronization between IT and PFC (Figure 4). Thus, while we

favor the interpretation of a non-specific signal emanating from

PFC (Figure 5), we suggest that it is more parsimonious to think

of it as carrying information about reward, rather than arousal per

se.34 Second, workingmemorymight account for the retention of

visual associations within each testing session, and it has been

often associated with both gamma79 and alpha synchroniza-

tion.80,81 However, by itself it cannot account for the animals’

ability to remember the associations many days later.

This long-term recall also supports the idea that changes in

behavioral performance in our foraging task reflect genuine vi-

sual learning. This is in contrast to an alternative possibility,

namely that the data reflect a shift in behavioral strategy between

early and later trials. Such shifts might be expected to alter the

dynamics of prefrontal activity82 but it is not clear why they would

lead to the pattern of synchronization changes we have

observed (Figure 3), why this pattern would emphasize the infor-

mative IT electrodes (Figure 4), or why it would have effects that

persisted many weeks later.

Finally, we have not specifically controlled top-down attention

in this task, as part of our goal was to simulate learning under nat-

ural conditions. Attention could therefore have played various

roles in learning or overall task performance.83 Of these roles,

the most commonly observed consequence of attention is an

improvement in sensory coding, which we did not observe in

our data (Figure 7). However, our data are consistent with a

different role for attention, namely that of selecting relevant visual

inputs based on reward.83,84 As mentioned above, such a role is

consistent with both the gamma synchronization we observe85

and its specificity for informative sensory signals (Figure 4). Pre-

vious work has found that this kind of attentional mechanism is

especially important for extracting relevant information from

complex stimuli86,87 of the kind we have used in our foraging

task, and so it could have been a factor in our data as well.
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Materials availability
This study did not generate any unique materials.

Data and code availability

d All behavioral and neural data used in this study are available from the lead contact upon request (due to the size of the data set).

d All custom MATLAB scripts related to this paper are available on GitHub (https://github.com/bennettcsorba/AbruptLearning)

and are publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Two adult male rhesusmacaquemonkeys (Macacamulatta, 4 and 10 years old) participated in the study. All animal care, surgical and

experimental procedures were approved by the Montreal Neurological Institute’s Animal Care Committee, and the animals were

monitored by the veterinary staff for the duration of the experiment.

METHOD DETAILS

In some experiments on the same animals, we examined the influence of transcranial direct current stimulation (tDCS) on neural ac-

tivity and behavior. These data have been reported in a separate paper21 and were excluded from the analyses reported here.

Implant preparation and surgical procedures
Experimental preparation has been described in a previous publication.21 In brief, high-resolution T1 and T2-weighted anatomical

MRIs (0.6-0.8mm3 voxels) were acquired for each animal andwere used for surgical planning. Animals were implanted with a custom

titanium head post (Hybex Innovations, Montreal Canada) using standard sterile surgical techniques. Post-recovery, animals were
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familiarized with the laboratory environment, and were trained for head fixation and subsequently the behavioral ‘‘foraging’’ task.

Once overall performance in this paradigm was stable, we prepared the animals for electrophysiology.

A second surgery was then performed to implantmultielectrode arrays (BlackrockMicrosystems; Utah, USA) into IT (area TEO) and

the lateral PFC, ventral to the principal sulcus (area 46v). This part of PFC receives projections from IT and is often considered part of

the machinery for visual image recognition. A neuro-navigation system (Brainsight Vet; Rogue Research Montreal Canada) synced

with previously completedMRI scans90 was used to ensure that the arrays were accurately positioned. Arrays were then inserted into

PFC and IT using a pneumatic device. The positions of the arrays were verified post-operatively (Figure 2), via coregistration of pre-

operative MRI scans with postoperative CT scans.

Behavioral task
Non-human primates were seated in front of a screen that spanned 30x60 degrees of visual angle, at a viewing distance of

40 cm. Eye positions were sampled at 500 Hz with an infrared eye tracker (SR Research, Ontario). During each session, the

animals completed the foraging task described below over the course of approximately 30 minutes, with each trial following

the progression shown in Figure 1A. Foraging trials were alternated with brief trials involving a calibration task (see below),

to ensure precise calibration of the eye tracker. The foraging paradigm was adapted from a previous study which investigated

associative learning in humans.20

Each trial of the foraging task began with the appearance of a high-contrast fixation cross on a gray screen. Animals initiated the

trial by fixating within 2 degrees of the fixation spot for 750–1000 ms, after which they were presented with a full-screen image. Im-

ages were chosen from collections of Creative-Commons and public domain photographs of natural images (url: flickr.com). Image

presentation order was randomized within each session, and sessions consisted of 75 or 100 trials (depending on the animal) of each

of the two images.

A 2o reward zone (RZ) was embedded into a random location in each image, and jittered a small amount on each trial, according to

a bivariate normal distribution with a standard deviation of 1–4 degrees. This encouraged the subjects to learn the spatiotopic loca-

tion of the RZ, rather than a specific set of saccade vectors (Figures S1G–S1J), as the RZ was positioned differently relative to the

starting eye position on each trial (Figures S1K and S1L). Upon image presentation, animals could freely search the image until they

found the RZ or 15 (Monkey F) or 20 (Monkey M) seconds elapsed. If animals did not successfully find the RZ within that time, a high-

contrast cue was shown at the RZ to guide their saccades into it. Once the animals had successfully maintained gaze position within

the RZ for 100 ms, they received a juice reward and the trial ended.

Throughout our electrophysiological recordings, behavioral performance was not associated with session number (linear regres-

sion between session number and N50, R
2 = 0.04, p = 0.12), as animals were trained extensively on the task prior to the commence-

ment of neural recordings. Thus, any fluctuations in performance across sessions are likely due to differences in image difficulty or

engagement.

In the main experiment, images were not repeated across sessions. We also conducted 19 long-term recall sessions, in which an-

imals ‘‘foraged’’ in image-reward zone pairs that they had seen 3–128 days earlier. Behavioral performance during these sessions is

described separately in the Results, but the data are not included in any of the electrophysiological analyses.

Eye calibration
Eye calibration was checked on interleaved trials in which the animals were shown a grey screen with a single small, high-contrast

saccade target, randomly located at one of 9 (or 25) locations on a 3x3 (or 5x5) grid spanning the central 14 horizontal and vertical

degrees on themonitor (Figure S7I). Animals received a liquid reward formaking a saccade to the target andmaintaining their gaze on

it for 750–1,250 ms.

Saccadic eye movements
Saccade onset and offset were estimated from the eye position traces based on eye velocity and acceleration,92 followed by manual

review to make small corrections to onset/offset times and to discard false detections. Microsaccades were extracted using an un-

supervised clustering method.89

Processing of raw neural data
Wideband neural signals were recorded using a neural interface processor (Ripple Neuro, Salt Lake City, Utah). Neural signals were

sampled at 30,000 Hz and band-pass filtered between 0.3 and 7,500 Hz during acquisition. These data were post-processed offline

to remove powerline and low-frequency movement artifacts, using the Chronux88 functions rmlinesc and locdetrend respec-

tively. Next, the local field potentials (LFPs) were extracted with a fourth order Butterworth low-pass filter (Fc = 500 Hz) and re-

sampled at 1 kHz.

Subsequent analysis was performed with theMATLAB signal processing package Chronux (v2.12.3) and custom-writtenMATLAB

software. The LFPs were manually reviewed for quality. Sites were excluded from analysis on individual sessions when they had an

exceptionally low signal-to-noise ratio (SNR < 3). An average of 89 out of 96 IT sites, (SE=0.33, > 92% of all sites) and 95 of 96 PFC

sites (SE=0.12, > 98% of all sites) were available for analysis.
Current Biology 32, 2467–2479.e1–e4, June 6, 2022 e2
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Trial epoch selection
Three epochs of interest (Figure 1A) were chosen from the data from each trial: a SceneOnset epoch (400ms following scene onset), a

Reward epoch (400ms following reward onset), and a Foraging epoch (225ms to 100ms before the onset of the first saccade on each

trial). We chose to limit the analysis of the Foraging epoch to the time just before the onset of the first saccade because the free-

viewing paradigm rendered the Foraging epoch otherwise uncontrolled in terms of eye movements and visual stimulation. In partic-

ular, eye movements can strongly influence LFP signals.93,94

The epoch durations were chosen based on preliminary analyses (Figure 3), with the intention to identify regions of interest in time-

frequency space. Other bands and window sizes around these event epochs were considered for all reported neurophysiological

measures to avoid biasing the results. See Figures 3 and S3; Figure S4 for other frequency bands, which showed no effect.

Calculation of spectral power
Within each epoch, we estimated the LFP power with multi-taper methods, using five tapers and a spectral resolution of 7.5 Hz95

(Figures S6A and S6B).

For both recording areas, we took the average power across all usable electrodes on each trial, within each trial epoch. For each

trial epoch, a maximal trial value was determined, to which all other trial values were normalized. Learning epoch averages were then

computed from the normalized values.

Synchronization
To quantify synchronization (Figures 3, 4, 5, 6, S1C, S1D, S2C–S2H, S3, S4, S6C, S6D, and S7A–S7H), we computed LFP-LFP coher-

ence, which is a measure of the linear correlation between two signals in the frequency domain96,97 and a commonly-used metric of

synchronization.97 Coherence is independent of absolute phase and is often thought of as the consistency across trials of the relative

phase angles between two signals. We computed magnitude-squared LFP-LFP coherence with multi-taper methods, using the

Chronux88 functions cohgramc and coherency for continuous signals. Five tapers and a spectral resolution of 7.5 Hz95 were

used. The magnitude-squared coherence between two signals at a given frequency is defined as the cross-power spectrum (also

called cross-spectral density) of those two signals divided by their individual power spectra, also taken at that same frequency.

Session averages for LFP-LFP coherence (Figure 4) were computed by taking the median values across usable electrodes within

(max. 4,560 pairs each) or between (max. 9,126 pairs) IT and PFC. Because coherence is not defined on a single trial, we used five-

trial windows to compute coherence across trials throughout each session. This allowed us to capture relatively abrupt changes in

the communication between IT and PFC that occurred over the course of a few trials. The first and last two trials of each session used

three-trial and four-trial windows respectively to compute coherence, but these data were rarely used.

As with power, we normalized coherence values to the maximum values within each trial epoch. Normalization was done indepen-

dently at each frequency. Averages within each learning epoch (Figures 3 and S1C) were then computed from the normalized trial

values for each trial epoch.

Correlations between coherence levels and behavior (Figures 3B and 3C) were obtained by subsampling different groups of elec-

trodes in each area 1000 times and computing the linear regression between the time of peak coherence and the N50 trial for the

corresponding session. Mean values of r2 ranged from 0.39, for 10 electrodes per area, to 0.73 for 96 electrodes per area. Only

the latter value is reported (in Figure 3C).

Calculation of spectral Granger-Geweke causality
Within individual sessions, non-parametric spectral Grange-Geweke causality estimates98 were computed between all usable elec-

trode pairings, using trial data from three learning epochs for frequency bands of interest. Causal estimates were then averaged by

learning epoch across all IT-PFC electrode pairings. The size of the temporal window used in each trial was dependent on the trial

epoch (see above).

Multi-unit analysis
Because single-unit activity was generally sparse in both areas, we focused onmulti-unit activity in this study (Figure S5). A three-step

process was used to extract multi-unit activity from the wideband signals. First, the raw signals were high-pass filtered (Fc = 500 Hz),

using a 3rd-order Butterworth filter. Multi-unit events were then defined as the instants where the resulting signal exceeded 3

robustly-estimated standard deviations from the mean (i.e., 4.2 median absolute deviations). To avoid double-counting events,

we imposed a 2-ms refractory period immediately after each threshold crossing. We defined MUA responsiveness as the mean

rate of MUA events (Figure 7) in units of events/s, occurring on each electrode during the 400 ms after the reward was dispensed

(‘‘reward responsiveness’’) or after scene onset (‘‘image responsiveness’’).

We used a linear discriminant analysis (LDA) to identify subsets of electrodes whosemulti-unit activity weremore (or less) selective

for the scenes being presented, and to determine if neuronal selectivity improved with learning. Classification was done indepen-

dently for each experimental session, and classifiers were trained separately on IT activity and PFC activity using scene labels as

class inputs (Figure 7). Two unique scenes were shown on every session, so the classifier was always trained to discriminate between

two data classes. LDA classifiers were trained on multi-unit activity collected on all available electrodes in IT and PFC, using the re-

sponses obtained at each site during the scene onset epoch.We chose this epoch because it provided the purestmeasure of sensory

selectivity, without confounding influences of eye movements or rewards.
e3 Current Biology 32, 2467–2479.e1–e4, June 6, 2022
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Classification performance on individual sessions was computed using leave-one-out cross-validation. Because population selec-

tivity did not change post-learning in either IT or PFC (Figure 7A), the classifiers were trained on all trials within a session. Classifiers

were also trained on shuffled class data as a control, where the performance was approximately 50%, as expected for a balanced

two-way classification task. Classifiers consistently relied on different IT electrodes to classify images across sessions (Figure S2A) in

each animal, as would be expected from the variable selectivity of different IT sites.31

To determine whether MUAs encoded the location of the RZ, we first identified saccades in the eye calibration trials made to tar-

gets located at similar spatial coordinates to the RZ (Figure S7I) and its reflection across both axes. This was done bymatching the RZ

coordinates for each image to the closest target location (by Euclidean distance) in the calibration task. The median Euclidean dis-

tance between the RZ and the closest target location in the calibration task was 2.97 degrees across images. One image whose RZ

had both an absolute azimuth and elevation of less than 2 degrees was excluded from this analysis, since the RZ’s spatial reflection

was directly adjacent to it.

We then used activity recorded during the calibration trials to estimate the response of each MUA signal, during the 250 ms before

the onset of the saccade to the corresponding target. From these responses we calculated the preference for the direction of the RZ

as a function of the multi-unit firing rates m:

index of selectivity =
msimilar � mopposite

msimilar +mopposite

This yielded an index of selectivity, which we used to sort electrodes from most to least selective; we then analyzed interareal

coherence levels for different levels of RZ selectivity in each frequency band and epoch (Figure S7). For the retinotopic analysis,

the procedure was identical, except that RZs were sorted according to their position relative to the fixation point on each trial.

Because the fixation point location varied somewhat from trial to trial (see Foraging task above), the retinotopic and screen coordi-

nate systems were not identical.

To determine whether population activity changed with learning, we generated a vector of population responses for each image,

averaging responses across 5 trials. We then correlated the vector with a similar vector calculated from the subsequent 5 trials and

repeated this procedure throughout the course of each session.

QUANTIFICATION AND STATISTICAL ANALYSIS

Response modeling
In each session, response times (RTs) for all presentations of each image were extracted. RTs were then smoothed with a three-

element median filter to exclude transient lapses in engagement. The resulting response time curves were well-described by sigmoid

functions, so the data were fit to a model described by the equation:

SðnÞ = --Gain 3
1

1+ e�Slope+ ðn�N50Þ + ðGain + MinRTÞ

where S(n) is the response time on the nth presentation of a given image. The Gain parameter represents the magnitude of the per-

formance improvement obtained through learning. The parameter MinRT reflects the animal’s asymptotic performance, or the

response time necessary to complete the task once the association had been completely learned.

Similarly, the N50 parameter indexes the trial number at which the response time reaches the halfway point between its initial value

and its asymptotic value. This parameter therefore identifies the midpoint of the shift from a pre-learning phase to a post-learning

phase (Figure 1B). The Slope reflects how quickly the response time shifted from its maximum to its minimum.

We excluded data from images in which the parameters of the sigmoid fits were inconsistent with reliable task performance. For

example, images for which N50 < 0 were generally too noisy to be interpreted. Images for which the animal failed to learn the asso-

ciation were those in which N50 was greater than 100, Gain was less than 3 s, or MinRT was greater than 3 s. We verified that the

excluded data reflected a lack of learning, in terms of the overall improvement in performance throughout the session, but we did

not perform any selection based on the abruptness of learning.

Statistics
To ensure that the results were similar between the two monkeys, we generally used permutative two-way ANOVAs,99 with monkey

identity as a factor. Where appropriate, we used individual t tests. When testing linear correlations between two groups, Pearson’s r

values were computed.

All significance thresholds were corrected for multiple comparisons where necessary. Correcting for multiple comparisons was

done by adjusting with a Holm-Bonferroni correction or a false discovery rate criterion,100 depending on the correct context. All sta-

tistical tests were performed in MATLAB.
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Figure S1. Additional behavioral and neural data for the example session in Figure 1 and split 
for individual animals. Related to Figure 1 and Figure 4. 
(A) The number of saccades made on each trial for the example image from Figure 1 (panel B). The animal 
transitioned from making many saccades to few saccades to the target around the moment of learning. 
(B) The rate at which saccades were made on each trial for the example image in Figure 1 (panel B). 
(C) Correlation between trial number with maximum alpha and trial number with maximum gamma coherences. 
(D) Synchronization between IT and PFC is shown for the alpha band (8-12 Hz) in the Reward epoch for the 
example session, with data aligned on the N50 trial. The dashed black line represents the grand median of all 
usable electrode pairs within the session. The red and blue lines correspond to the average strength of 
synchronization between all PFC sites and those IT sites that are most (red) and least (blue) informative about 
the images shown in each session. The most informative IT electrodes showed higher alpha synchronization (8-
12 Hz) with PFC around the moment of learning in the Reward epoch, as in Figure 4 (panel B). Shading around 
each line indicates standard error (SEM) across electrodes. 
(E) Estimated sigmoid fits for all images for Monkey F, aligned on the N50 value for each image. Learning is abrupt 
for most images. 
(F) The rate of learning, defined as the performance improvement as a function of trial number, for the images 
shown in E. Rates are aligned on the N50 value for each image. 
(G-H) Example positions of the starting eye position (blue cross) relative to the RZ (orange circle) for a single 
image. Trials before the image’s N50 trial. 
(I-J) Example positions of the starting eye position (blue cross) relative to the RZ (orange circle) for a single 
image. Trials after the image’s N50 trial. 
(K) For the example image from (G-J), the distribution of directions of the first saccade made on every trial. 
(L) For the example image from (G-J), the distribution of directions of the final saccade made (i.e., the saccade 
to the RZ) on every trial. 
 
 
 

 

 
 
 
 
 
 
 
 
 

 



  



 

Figure S2. Contribution of different electrodes to image selectivity and reward responses across 
sessions. IT responsiveness does not drive synchronization. Results are consistent across 
animals. Related to Figures 4, 5 and 6. 
(A) LDA selectivity rankings for every IT site are plotted for each individual session for Monkey M. Red indicates 
highly informative sites, while blue indicates uninformative sites. The informativeness of each site varies across 
sessions, indicating that different electrodes were selective for different images. 
(B) MUA responsiveness to reward for every PFC site is plotted for each individual session for Monkey M. Red 
colors indicate highly responsive sites, while blue colors indicate sites with weaker responses. The electrodes 
that show responses to the reward onset are similar from experiment to experiment. 
(C-D) Normalized coherence between IT and PFC is shown low-gamma (30-50 Hz) synchronization during 
foraging (C) & alpha (8-12 Hz) synchronization following reward (D). Each band represents the grand median of 
all usable electrode pairs for all images. Error bars display standard error (SEM) across images. Average levels 
of synchronization, with the data split by responsiveness to the appearance of images in IT. For all epochs and 
bands, there was no statistical difference in the extent to which PFC was synchronized with more responsive 
(red) and less responsive (blue) sites in IT. The dashed black line indicates the overall average synchronization, 
which did not change noticeably across trials for these frequencies and these epochs. 
(E-F) Figure 4 (panel B) with data for each animal shown separately. The changes in synchronization across time, 
as well as the preference for informative IT electrodes, are present for each animal individually. 
(G-H) Individual sites in IT were sorted based on their average coherence levels with sites in PFC (pre-learning) 
and checked for differences in decoding accuracy (by quartile) on individual sessions. There was no consistent 
statistical relationship between coherence levels and decoding accuracy for either the Foraging epoch (using 
gamma coherence) or the Reward epoch (using alpha coherence) (two-way ANOVAs, p > 0.05). Means are of all 
sites across sessions (Monkey M = 3247 electrodes from 37 images, Monkey F = 1194 electrodes from 13 
images), and bars represent standard error (SEM).  
(G) Ranking of mean pre-learning low-gamma (30-50 Hz) coherence (Foraging epoch) versus image selectivity 
rank for IT sites.  
(H) Ranking of mean pre-learning alpha (8-12 Hz) coherence (Reward epoch) versus image selectivity rank for 
IT sites.  
(I) Mean alpha (8-12 Hz) non-normalized coherence (early trials) between IT & PFC during the Reward epoch 
versus session number. 
(J) Mean low-gamma (30-50 Hz) non-normalized coherence (early trials) between IT & PFC during the Foraging 
epoch versus session number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 



Figure S3. Specificity of epochs and frequency bands. Related to Figure 4. 
(A-D) Normalized coherence between IT and PFC is shown for alpha (8-12 Hz) synchronization during foraging 
(left column) & low-gamma (30-50 Hz) synchronization following reward (right column). The frequency bands 
have been swapped across epochs relative to the data shown in Figure 4. Each band represents the grand 
median of all usable electrode pairs for all images. Error bars display standard error (SEM) across images. 
(A,B) Average levels of synchronization, with the data split by responsiveness to the appearance of images in IT. 
For all epochs and bands, there was no statistical difference in the extent to which PFC was synchronized with 
more responsive (red) and less responsive (blue) sites in IT. The dashed black line indicates the overall average 
synchronization, which did not change noticeably across trials for these frequencies and these epochs. 
(C,D) Average levels of synchronization, with the data split by electrode selectivity levels for images in IT. For 
alpha oscillations during the Foraging epoch and for gamma oscillations during the Reward epoch, there was no 
statistical difference in the extent to which PFC was synchronized with informative (red) and uninformative 
(blue) sites in IT. The dashed black line indicates the overall average synchronization, which did not change 
noticeably across trials for these frequencies and these epochs. 
(E-F) Synchronization between IT and PFC is shown for the alpha band (E) and gamma band (F) in the “last 
saccade” epoch, which consists of the window preceding the saccade into the RZ (225ms to 100ms before the 
onset of the saccade) . These data shown in the same style as Figure 4. The most selective IT electrodes 
showed higher gamma synchronization (30-50 Hz) with PFC around the moment of learning in the Foraging 
epoch.  
(G-H) Complementary figures for Figure 4A and Figure 4B: 
(G) For Figure 4A, the ratio of synchronization strength for the most and least informative electrodes across 
trials relative to N50. Asterisks indicate trials in which the ratio was significantly different from 1. 
(H) For Figure 4B, as in (G), but for alpha synchronization (8-12 Hz) during the Reward epoch. 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure S4. Image responsive or selective sites in PFC do not unilaterally drive synchronization 
with IT. Related to Figure 5. 
Normalized coherence between IT and PFC is shown for during foraging (left column) and low-gamma 
synchronization following reward (right column) for alpha (8-12 Hz) and low-gamma (30-50 Hz) bands. Each 
band represents the grand median of all usable electrode pairs for all images. Error bars display standard error 
(SEM) across images. 
(A-D) Average levels of synchronization, with the data split by electrode selectivity levels for images in PFC, as 
using PFC – rather than IT electrodes – to define selectivity. For all epochs and bands, there was no statistical 
difference in the extent to which IT was synchronized with informative (red) and uninformative (blue) sites in 
PFC. The dashed black line indicates the overall average synchronization, which did not change noticeably across 
trials for these frequencies and these epochs. 
(E-G) Average levels of synchronization, with the data split by responsiveness to the appearance of images in 
PFC. For alpha oscillations during the Foraging epoch and for gamma oscillations during both the Foraging and 
the Reward epoch, there was no statistical difference in the extent to which IT was synchronized with more 
responsive (red) and less responsive (blue) sites in PFC. The dashed black line indicates the overall average 
synchronization, which did not change noticeably across trials for these frequencies and these epochs. 
 

 

 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S5. Examples of sensory responses in IT. Related to Figure 7. 
(A) Visual-evoked potential from a selective IT channel is shown. The data presented are for the same session 
used in Figure 1. 
(B,C) Multi-unit activity during scene onset is shown for the same channel used in (A) for two images from the 
same session. Yellow shows the data from the pre-learning phase of the session, while gray shows the data from 
the post-learning phase of the session. This site responds more to image 2 than to image 1, with no significant 
change in firing rate or selectivity across stages of learning. 
(D) Visual-evoked potential from a more responsive and less selective IT channel are shown. This site responds 
strongly to image onset but does not distinguish between image 1 and image 2 and does not exhibit significant 
changes in responses across stages of learning. 
(E,F) As in (B,C), but for (D). 
(G) An example signal from an excluded IT channel is shown. 
 

 

 

 

 

 



 

 
 



Figure S6. Abrupt learning is not captured by local LFP power or synchronization. Related to 
Figure 7. 
Time-frequency oscillatory power and coherence (1-100 Hz) for IT (A,C) and PFC (B,D) are shown for three trial 
epochs (‘Scene’, ’Foraging’, ’Reward’) and three stages of learning (‘Pre-Learning’, ’N50’, ’Post-Learning). 
Learning epochs are binned and metrics are normalized as in Figure 3. Data shown are the grand average of all 
IT and PFC electrodes for all images for both animals. Reddish colors indicate high power or coherence, while 
bluish colors indicate low power or coherence.  
(A) LFP power in area IT, across all frequencies, time points, trial epochs, and learning stages. The only difference 
across learning stages was a slight increase in beta (16-24 Hz) power after scene onset (lower left panel), which 
was confined to the time points earlier than visual response latencies (< 100 ms) and which did not reach 
statistical significance (two-way ANOVA, p > 0.05). 
(B) LFP power in area PFC. There was a decrease in low-frequency power (4-12 Hz) during the Scene Onset epoch 
(two-way ANOVA, p < 0.05). 
(C) LFP-LFP coherence within IT changed very little with learning. 
(D) LFP-LFP coherence within PFC was largely unchanged with learning, except for a modest decrease in the low 
frequencies (1-12 Hz) from the pre-learning to the post-learning stage of the session (two-way ANOVA, p < 0.05). 
(E-F) A relationship between IT sites’ image selectivity and power was tested for. Electrodes were ranked by 
their trial-averaged power (in each band individually) during the scene onset period. The results show that there 
is a very weak (negative) relationship between unit selectivity and power on the same electrodes. To visualize 
this relationship more clearly, we plot data from animal M, after dividing the selectivity values into quartiles.  
(E) Ranking of trial-averaged alpha (8-12 Hz) power versus image selectivity ranking. 
(F) Ranking of trial-averaged low-gamma (30-50 Hz) power during versus image selectivity ranking. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S7. Retinotopically selective or spatiotopically selective sites in PFC do not drive 
synchronization with IT, and vice-versa. Related to Figure 5. 
Normalized coherence between IT and PFC is shown for low-gamma (30-50 Hz) synchronization during foraging 
and alpha (8-12 Hz) synchronization following reward. Each band represents the grand median of all usable 
electrode pairs for all images. Error bars display standard error (SEM) across images. The dashed black line 
indicates the overall average synchronization, which did not change noticeably across trials for these 
frequencies and these epochs. For all conditions, there was no statistical difference in the extent to which 
informative (red) and uninformative (blue) sites in either PFC or IT synchronized with the other area. 
(A,B) Average levels of synchronization, with the data split by electrode selectivity levels for retinotopy in PFC, 
as determined with a selectivity index using multi-unit activity on each electrode.  
(C,D) As in (A,B), but with data split by electrode selectivity levels for retinotopy in IT, as determined with a 
selectivity index using multi-unit activity on each electrode.  
(E,F) Average levels of synchronization, with the data split by electrode selectivity levels for spatiotopy in PFC, 
as determined with a selectivity index using multi-unit activity on each electrode. 
(G,H) As in (E,F), but with data split by electrode selectivity levels for spatiotopy in IT, as determined with a 
selectivity index using multi-unit activity on each electrode. 
(I) Diagram of target locations for the calibration task. On every trial, animals made a saccade to a small, high-
contrast saccade target, randomly chosen from one of 9 (or 25; illustrated above) locations on a 3x3 (or 5x5; 
illustrated above) grid spanning the central 14 horizontal and vertical degrees on the monitor. To determine if 
MUAs encoded the spatiotopic location of the RZ, we matched RZ coordinates (red) and the reflection of the 
coordinates (blue) for each image to the closest target locations in the calibration task.  To determine if MUA 
encoded the retinotopic location of the RZ, we sorted RZ locations according to their positions relative to initial 
fixation points on each foraging trial, and matched resulting vectors to saccades made in the same (or opposite) 
direction in the calibration task. 
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